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NOTICES
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1.0 INTRODUGCTION .

‘The U.S5. Army Tank—-Automotive Command has been interested
in improving tactical truck life and performance. This
study addressed the problems posed by the M80S and M939
series 5 ton trucks.

Current truck wheels and frames, which are manufactured
from conventional materials (primarily steel), exhibit
excessive deterioration from corrosion while in service.

In order to improve performance in this area and to
decrease the overall weight of the vehicle, a few
components were selected for conversion to structural
composites. This program involves the conversion of a
truck wheel from steel to structural composite and the
evaluation of these new wheels in the military environment.:

Ewald Associates, Inc. considered the most significant
variables in the redesign of the current wheels from steel

to structural composite materials. These materials have

an organic chemical matrix, such as epoxy or vinylester,

into which reinforcing fibers such as glass, graphite or
aramid are disposed. By proper combination of fibers and
matrix, composite wheels can be manufactured to withstand the
severe environment in which military vehicles operate. The
developed composite wheel proved to be much lighter than

its steel counterpart, just as strong if not stronger, more
corrosion resistant, and can be manufactured using existing
process technigques with some modlflcatlon for product guality
control.

Structural composites, however, are anisotropic in their
properties, thus their design requires more complex procedures.
These procedures require the use of sophisticated computer
programs and are usually based on finite element analysis
techniques. '

In addition to design and material selection, manufacturing
methods must be analyzed and proper measures taken to
ensure strict guality controls to achieve the strength,
stiffness, toughness and durability required in the part
selected. :
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2.0 WHEEL DESIGN AND ENGINEERING

2.1 Wheel Design

The design of the composite wheel was based on compression
molding as the manufacturing process. Both the basic wheel
and the retaining ring were to be manufactured using this
method.

The initial wheel design, in addition to being thicker in
cross—section, employed metal inserts in the mounting holes
to withstand the bolt torque. This design was retained until
testing showed that a metal retaining ring was required
instead of metal inserts.

The wheel assembly was designed to maintain the overall size
of the current steel part. The following constraints were
used in this design:

2.1.1. Ten equally spaced mounting holes 1.210 to 1.220
inches (30.739 to 30.988 mm) in diameter were molded into
the wheel.

2.1.2. The disc and wheel rim were fabricated as an
integral assembly. Thus, no rivets were necessary for
attaching the two components as is the case with the
current steel wheel. A schematic of the developed
composite wheel is shown in Figure 1.

2.1.3. Variable thichkness cross sections were used
to minimize stress concentrations at critical load
‘"carrying sections and to allow for a uniform fiber
flow during the molding process.

2.1.4. The wheel rim was within all of the Army
requirements, i1.e. the maximum out of round and the
maximum out of flat are both less than 1/16 inch
(1.587% mm) .

2.2 Design Approach

The following design approach was followed during the course
of the program:

2.2.1. Basic characteristics of the current steel wheel

were determined from field data, data supplied by TACOM,
and geometric measurments taken from the existing fleet.

12
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2.3

2.2.2. The input loada on each wheel were evaluated
based on the Society of Automotive Engineering (SAE)D
recommended practices.

2.2.3. Based on load data generated for the steel wheel,

various composite wheel designs were investigated. The
composite wheel design was based on a symmetrically
variable cross—section. This concept aids in minimizing

stress concentrations at critical load carrying sections.

2.2.4. A computer model was developed as an aid in the
initial stages of the conceptual designs. This is
discussed at a later point in this report.

2.2.5. After several initial designs were completed, a
complete finite element program was developed and used to
determine stress contours in the selected design of the
composite plastic wheel under the applied loads supplied
by TACOM.

2.2.6. The optimum composite material for the wheel
application was introduced in the analysis.

2.2.7. Computer output of the various stress contours in
every composite lamina were plotted using the NISA program.
Details of the analysis are discussed in section 5.

2.2.8. Readjustment of the wheel thickness was made,
based on the computer ocutput and the failure criterion
for selected composite laminates. The analysis used

the maximum stress theory as the failure criterion.
Any local area of high stresses was increased in
thickness to allow for a safety factor of at least two.

Wheel Concept

This concept of variable thickness resulted in a functional
composite wheel with minimum weight. This is in contrast to
stamped metal wheels where the rim and disk are fabricated
by stamping steel sheets of specified thickness.

3.0,

DESIGN REQUIREMENTS

The composite wheel design was dictated by the applied loads
encountered during the service life of the truck.

These loads are numerous and were thoroughly investigated.
Some of the load requirements are discussed below.

14




3.1 Input Loads

The input loads for the wheel design were based on data
established by Army specifications and SAE recommended
practice. These loads can be classified according to the
following requirements the wheel nmust be able to meet during
the truck service life. :

2.1.1.

Dynamic Cornering Fatigue Test (Figure 22.

The applied force and moment on the wheel were defined

as.:

M

I

Where M

slr

d

K

L[(slr)u=d]

12 F = M
Moment Arm

Force (1bs)

Bending moment as applled on the truck wheel
(lbs—ft) :

Load rating of the wheel as specified by Army
requirements (LB force) = 5190 LB (2354.2 Kg
or 23086 Newton)

Static load radius of the tire to be used on the
wheel as specififed by the army (inches) = 20.3 IN
(515.62 mm> .

Coefficient of friction developed between tire
and road (=0.70)

Offset of wheel = 3.75 inches (95.25 mm)

Nondimensional parameter (1.10 to 1.33) = 1.33

The wheel was designed to survive at least 500,000 cyclee
under these loads without failure.

The wheel should be able to sustain these loads for this
number of cycles without the developing cracks that
propagate through any of the wheel sections.

15
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3.1.2. Rim Dynamic Radial Fatigue Test (Figure 3).
The radial load applied to the wheel was determined
as follows:

F_=1K
r

Where Fr = Radial force (LB force)

Load rating of the wheel as specified by the Army

L =
= 5190 pounds.
K =

Nondimensional parameter (=2.0)

2.2 Minimum Design cycle life

The mimimum design cycle life for the fabricated composite
wheel was 60,000 cycles.

Based on the above requirements, the various composite wheel
design concepts were reduced to one optimum design. In this
concept the wheel cross—-sections remained symmetric. This is
the basic cross—section shown in Figure 1. The variables in
each concept were primarily wall thickness, distribution of
reinforcing ribs, and the number of ribs. During this phase
of the development, these parameters were varied to produce

a wheel of minimum weight which would withstand the loads
imposed during service.

4.0 FINAL DESIGN CONCEPT

The final design concept for the composite wheel is shown
in Figure 4. The average wall thickness is approximately
0.75 INCHES (19 mm?>. Reinforcing ribs (20 ribs at equal
intervals around the circumference) were added to provide
a uniform load carrying capacity at minimum weight.

4.1 External Dimensions

The external dimensions of the composite wheel were dictated
by tire size, location of mounting bolts, and rim diameter.
The build up in the plastic wheel thickness was accommodated -
on the inside of the wheel as shown in Figure 4. No sharp
corners between the rim and the disc were permitted. This
will allow a gradual transition of the stresses from the disc
to the rim, thus eliminating areas of stress concentratioen
and probable initiation of cracks.

17
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Figure 3 Applied Loads on Wheel During Rim

Radial Fatigue Testing
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Areas around the mounting bolta in the disc were formed from
thicker material to form bosses. These bosses were reinforced
with steel inserts to accept the mounting bolts. This approach
was intended to decrease the stresses at the bolt mounting
holes and thus avoid enlarging the mounting holes or creating
hair line cracks while in service.

4.1.2 The composite wheel design contains ten (10) mounting
holes as required in the basic drawing. At first, the wheel
was designed with steel inserts to provide the necessary
surface for holding the bolts and retaining the necessary
torque. Later tests showed that with these inserts there
was insufficient material to keep the wheel from cracking.
The final design uses a metal ring to provide the necessary
surface area to distribute the mounting bolt load adequately.

4.1.23 The composite wheel contains a slot three inches long
by 0.26 inches wide (76.2 x 6.604 mm) to provide an opening
for the valve stem. In addition, there is a 1/2 inch (12.7 mm)
hole in the dish portion of the wheel to allow the valve stem
to extend through for servicing.

4.1.4 The resulting truck wheel is corrosion resistant with
better geometrical uniformity and a significantly reduced
weight. A S0% weight reduction was achieved in the composite
wheel as compared to the steel wheel. Because a wheel is an
unsprung and rotating mass, this weight reduction is
particularly significant with regard to truck ride, vibration,
and acceleration.

4.2 Integral disc/rim assembly

4.2.1 'The wheel was designed as an integral disc/rim assembly
with a separate side ring. The latter was designed as a split
composite side locking ring with a 0.092"-0.31" (2.38 to

7.94 mm) gap and breaking slots to complement the composite
wheel. This ring is essential for mounting and removal of

the tire. The ring also provides sufficient spring force to
hold the tire in place while the wheel is in service.

4.2.2 Details of the split-in ring with the breaking slot
are shown in Figure 5. It should be noted that the details
of the breaking slot and the split-in are identical to those
used in the current steel side ring. The prime difference is
is that this ring was fabricated from continuous fiber
reinforced composite material.
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4.2.3 A view of the assembled disc/rim composite part, the
associated side ring, and a mounted tire is shown in Figure 6.

5.0 ENGINEERING ANALYSIS

The basic design of the wheel was completed and optimized.
The wheel was anaylzed using finite element modeling. The
NISA computer model was used in conjunction with thick shell
elements to present the wheel structure. Three dimensional
(Instead of two dimensional) elements were employed, to
accurately duplicate the geometric features of the composite
wheel design. Because this design is symmetric, only half
of the wheel was modeled. The concentrated stresses around
the mounting holes were analyzed separately. The wheel ring
was also modeled independently. Use of common nodes between
the ring and the wheel provided displacement continuity, and
common stresses provided an accurate and realistic simulation
of the actual structure.

5.1 Computer Analysis

Computer analysis of the plastic wheel under the aforemen-
tioned loading conditions were used. The resulting stresses
between the disc/rim joining area, between the assembly and
the attached side ring, and around the mounting holes, were
determined. These are the most critical areas, since they
are exposed to high stresses. High stress concentrations
occur around the mounting holes, where the truck weight is
transmitted via the mounting bolts.

5.2.1 3Since the composite wheel is far from a duplication
of the current steel wheel, a detailed finite element analysis
was conducted. The analysis was based on the following:

5.2.1.1 Proper composite material allowables based
on a 35 percent confidence level.

5.2.1.2 A fine mesh grid system using a two dimensional
shell element for each composite layer of the
wheel section.

5.2.1.3 A specially adoptable computer program
(NISA) designed for laminated composite
materials was used. This program uses
finite shell elements to model the wheel.

22



Figure 6 Assembled Composite Wheel with Tire Mounted

(Conceptual Design)
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£.2.1.4 Since the wheel was fabricated from oriented
composite materials, the material anisotropy
and bending-extensional coupling will be
necessary features in the analysis.

5.2.1.5 The use of shell elements (tailored for
composite materials) for modeling the wheel
structure. These elements included the
following parameters:

5.2.1.5.1 The effect of transverse shear deformation
and rotary inertia

5.2.1.5.2 Material anisotropy

5.2.1.5.3 Bending/extensional coupling due to fiber
orientation

5.2.1.5.4 - Other material characteristics

5.3 Finite Element Presentation of the Composite Wheel

5.3.1 Various size finite shell elements were used in this

analysis. Very small size elements were used around the
mounting holes, at the rim/disc intersection, and at the side
ring attachment areas. This allowed the detection of any high

stress concentration, especially around the mounting bolts.

5.3.2 A typical finite element model of the composite wheel
is shown in Figure 7. Due to structural and load symmetry,
only one gquarter of the wheel structure was modeled. Figure
8 dipicts a model of the truck wheel with computer—-generated
plots of stress contours.

5.2.2 To calculate the ultimate stresses of each lamina, the
overall properties of the lamina were determined using
-engineering constants for an orthotropic material. Fiber
orientation and basic properties of each lamina were based

on developed experimental data. The contribution of each
lamina to the overall laminate properties is a function of
lamina thickness relative to overall laminate thickness. The
effect of fiber orientation in each lamina on the engineering
constants was determined by mathematical transformations
based on the angle between the fibers and the global
coordinates of the structure under investigation. This
coordinate relationship is shown in Figure 9.

24




Figure 7 Typical Element Model of a Classic Wheel
' 25




LOdLAO HOOLNOD SSIHLS UNY 133HM ¥ 30

1300 LN3IW3T3 ALINIH — VSIN 8 0014

\PETERIES
N A

| A b

26




Figure © Fiber Directions with Respect to Global
Axis X,Y of Structural Components.

27




Thue, for a larina with fibers oraientated st ar- angle O with
respect to the global x axis of the structure, the following
expresgions for the lamins modulue can be obtained:

1 .1 C:c:'.-‘._4 6 + }._1_ - 2u,. sin? & cos? @& + 1 Sin40

Exx Ell G12 El 52

t

4
1 _1 ‘Cos 8+ (_}_ _ 2u 21) sin?e Cos?s + 1 sine
- =

5.2.9 It wae aesured that the strain of each crthotropic

larina i&s within the linear range of Hook’s law, ancd the
streeses and sBtraine were treated as second rank tensore.

The transformation of the stresses/siraine fror orne et of axx:e
tc another for each: larina were derived frcr the ecullibraiur
of a sra.l elerent as shown in Figure 10,

€.3.5 Aseurinc @ biaxial etate of stresees, one can cbtailn
the fcllowing relstionehips:

2 .

611 = gy (COs5°8) + &y (Sin?e) + £y (2 Sin 8 Cos 9)

22 = €xx (5in?8) + &y (Cos®8) - &, (2 Sin 8 Cos 9)

Ay, =-[xx (Sin 6 Cos 8) + {yy (Sin 8 Cos 8) + fxy (Ccsze - Sinzs)

Similarly, the strains in each larins carn be exrresszed as!

{al =‘fxx (Cos?8) +-f§y tsinZa) + a;y (Sin 8 Cos 8)

'622 ='€xx (sin?g) +'éyy (Cos?8) '.-A;ty (Sin 8 Cos 8)

Yey =24, tsin 8 cos 0) +¥Fyy (sin 0 CosD) + Yy (Cos20 - Sin®0)

S

Where:

€

11 and 11 are the lamina streses and strain along the fiber
direction (11).

22 and 22 are the lamina stress and straine perpendicular
to the fiber direction.
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Figure 10 Orthotropic Lamina Under Biaxial Stresses
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Figure 12 General Shell Element and Various Coordinate Systems
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t12 and 12 are the shear stress and strains of the lamina.
3] = angle of orientation of the lamina with respect
to the global axis of the structure.

Solving the above relations, one can obtain the lamina proper-
ties in the global axis system as a function of lamina orienta-
tion. Based on these relationships the ultimate elastic
strength for each lamina can be expressed.

5.3.6 A numerically integrated finite element program was
used to evaluate the stresses and strains in each composite
lamina, as well as the overall deformation of the composite
wheel.

5.3.6.1 The computer program is basically designed for
laminated composite structural systems. The elements are
fight node isoparametric general shell finite elements as
shown in Figure 11. Each shell node has its own local
coordinate system, which is defined and related to the
overall global cartesian coordinate system to the wheel.
Definitions of these coordinate systems are shown in Figure
12. Each finite element was represented by the middle
surface of the shell and was assigned five basic degrees

of freedom as shown in Figure 13.

5.4 Computer Programs Used in this Analysis:

The following computer programs were used for the execution
of this project:

5.4.1.0 NISA :Overall finite element analysis program

5.4.1.1 NISACHN :To locate coincident local normals for
general shell isoparametric elements

$5.4.1.2 NISAWFR :To check maximum wavefromt
5.4.1.3 NISAMPG :To generate the coordinates of middle nocdes

S.4.1.4 NISAICE :To check input data and to compute element
: distortion

5.4.1.5 DISPLAY :An interactive isoparametric finite element
graphics program
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f} 7 / f Local Node Coordinate System-
£

' Degree of freedom of each node

Layer Local Coordinate System

Uygs U, U displacements of rode in global cartesian

x* Ty
~ coordinate system X, ¥, 2
8, 98 rotations about axes of node I respectively

4} = angle between principel fiber direction and local
element coordinate system

Figure 13 Degrees of Freedom of Shell Element Node Points
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$.4.1.6 DIGIT :To digitize geometrical data scaled from
the drawing

5.4.1.7 Figures 14 and 15 illustrate the above.
5.5 Computer Output

For each of the load cases analyzed in this investigation,
the output from the computer program included the following:

5.5.1.0 A list of all input data
5.5.1.1 Strain energy for each element
5.5.1.2 Reaction forces at each node
5.5.1.3 Nodal displacement

5.5.1.4 Element gauss

5.5.1.5 Stresses computed and printed for principle material
directions, i.e., parallel to and normal to the
fiber direction. These stresses are:

Sxxstress in fiber direction

Syystress normal to fibers

Sxyinplane shear stress

5.5.1.6 Element stress resultants

5.5.1.7 Nodal averaged stress resultants

6.0 MATERIALS
6.1 Discussion

Automotive truck wheels are complex structures subjected to
severe loads during service. In steel with a modulus of

30 x 106psi (206.8 GPa) in all directions, the only properties
that need be considered are the tensile strength and fatigue
limits. 1In structural composites,however, the modulus of the
material is lower but, its strength may be tailored as a
function of material thickness, fiber orientation, and several
other parameters.
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6.1.2 It was realized that the material to replace the basic
steel wheel will be much thicker. In order to determine the
exact arrangement of constituent materials, several thick
composgsite plagques (12" x 12" x 1") were molded and cut into
test samples for experimental mechanical property determination.

At first a hybrid of glass and graphite composite plies with
a resin system of either epoxy or vinylester was considered.
However the hybrid system did not provide the neccessary
astrength.

6.1.3 Many other materials were evaluated using chopped
glass in an epoxy resin (similar in nature to SMC compounds
in epoxy system). The final material choice called for
oriented continuous glass fibers. The fibers were oriented
both circumferentially and radially. The basic properties
of the constituent materials to be used in the construction
have been developed both experimentally and theoretically.

6.2 Material Form
The wheel assembly was fabricated using two materials.

6.2.1 Continuous unidirectional glass sheets (XMC type

material) v
€.2.2 A chopped glass fiber compound (HMC type material) with
high glass loading (65% by weight)

The continuous glass fibers provide the added fatigue strength
needed for the wheel environment. The discontinuous fibers
‘aided in the formation of variable wall thickness at various
sections of the wheel.

6.3 Compound

A compound of oriented continuous glass fibers and discon-
tinuous glass fibers in a vinylester matrix was utilzed in
this application. The compound was supplied in a sheet form
with the proper thickness.

6.4 Mechanical Properties
Basic mechanical properties of the discontinous glass compound

are shown in Table 1. The properties of the continuous glass
compound are shown in Table 2.
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7.0 1INPUT LOADS

The following input loads were introduced in the analysis:

7.1 Vertical Loads

7.1.1 The normal vertical static load on each wheel eqguals
3500 pounds (1587.6 Kg, or 15569 Newton)

7.1.2 The maximum vertical load rating (for the steel wheel)
equals 5190 lbs. (2354.2 Kg, or 23086 Newton)

7.2 Side Loads

7.2.1 The side load normal, applied at ground level, equals
1700 1bs. (771.1 Kg or 7562 Newton)

7.2.2 The maximum side load, applied at ground level, equals
2585 1lbs. (1177.1 Kg or 11543 Newton)

7.2.3 The area of the load resistance is equivalent to the
area of the tire in contact with the ground.

7.2.4 The maximum applied dynamic load p = M/A x g
where P = applied dynamic load (pounds)

M = Maximum applied moment (ft.-1lbs)
= 13,205 ft.-1lbs. (17903.6 Meter-Newton)
A = Moment Arm
g = gravity loading factor based on variocus road

terrains

7.3 Resulting Dynamic Load

The resulting maximum dynamic load is equivalent to 7,558
pounds (33620 Newton).

These loads are based on the following:

7.3.1 Wheel load rating = 5190 pounds (2354.2 Kg or
23086 Newton?

7.3.2 Coefficent of friction between tire and road M=0.70
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7.3.3 Wheel offset = 2.75 inches (95.25 mm)

7.3.4 Static load radius of the tire = 20.3 inches
(515.62 mm)

7.3.9 Truck width = 74.00 inches (1879.6 mm)

7.3.6 In this analysis, the composite material used in the
wheel was assumed to be relatively homogeneous. The mechanical
properties of this material are represented in Tables 1 and 2.

" 7.4 Second Loading Conditions

7.4.1 In addition, the computer program generated engineering
data for a more severe loading condition. These loading
conditions are:

a. The truck is at its maximum gross weight of 42,500
ibs. (19277.9 Kg’

b. The maximum vertical load on the front tire is 6000
lbs. (2721.6 Kg or 26689.3 Newton?

Cc. 3Jide load applied at the ground level of tire is
2600 lbs. (1179.4 Kg or 11565.4 Newton)

d. Tire inflation pressure is 85 psi. (586 KPa)

Results of the cbmputer analysis (in the form of stress
contours) for the second loading condition are presented in

Figures 18 to 31.
7.5 Third Loading Condition

7-5.1 Computer analysis for the Dynamic Cornering Fatigue
was run using the following input:-

7.5.1.1 The applied moment on the wheel is equivalent to
7790 ft-1bs. (10562 Meter-Newton). This load represents the
design load of the wheel. A lateral load equal to 4,559 lbs.
(20257 Newton) was introduced in conjunction with a moment
arm equal te 3.25 ft. (0.99 Meter? This combination produces
the required moment of 7790 ft-1lbs.

7.5.1.2 A safety factor of 1.9 of designed load was intro-

duced to the resultant moment as specified by the SAE, thus
the torgue became equivalent to 14,800 ft-1bs.
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7.5.1.3 VUnder this inflated torque, the wheel bogie was
scheduled to withstand 40,000 cycles.

7.5.1.4 The composite material used is the same as in the
previous example.

The stresses in the composite wheel are plotted as stress
contours throughout the surfaces of the wheel. These plots
are shown in Figures 16 - 43.

7.5.2 These computer results indicate that a composite wheel
based on this design can perform as required.

8.0 MANUFACTURING

Fabrication of composite wheels with the required degree of
roundness and dimensional accuracy requires a well controlled
production method. During the development program, several
manufacturing methods were investigated. Finally, the
compression molding technique was chosen because of its
reliability and adaptability to future production methods.

8.1 Tooling
After the wheel and lock rim design was completed, tooling

design was initiated. Based on the fact that the final
mechanical properties required were quite high and that

the wheel contours had to contain the tire, it was decided

that each part would be manufactured by compression molding.
Thus, closed die tooling was selected to achieve both the
mechanical properties and the wheel shape.

8.1.1 Manufacturing Tools

A specially heated steel mold was designed, based on the
finalized geometrical configuration of the composite wheel.
The design and construction of the wheel mold is important,
because it influences the quality, consistency, and weight of
the finished product.

8.1.2 The mold was fabricated from tool steel. Well designed
shear edges are necessary to insure proper sealing and minimum
flash. Close tolerances were maintained at the shear edges to
prevent material loss and to minimize flow orientation problenms
during molding. Proper heat treatment is necessary to reduce
mold surface abrasion caused by contact with the wheel material,

and thus to extend mold life.
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8.1.3 The wheel mold consisted of three basic units:
8.1.3.1 The female cavity
8.1.3.2 The male plunger

8.1.3.3 S5liding side blocks activated by hydraulic
cylinders '

8.1.4 A schematic of the basic wheel mold is éhown in Figure
44. The tool is equipped with ejection pins activated by an
ejection plate for part removal from the mold.

8.1.5 Since the design requires that the disc and rim assembly
be fabricated as an integral unit, and the side ring to be
fabricated separately, another steel tocl for the side ring

was designed and fabricated. This tool was simpler than the
disc/rim tool. '

8.1.6 Tool steel was used to fabricate the side ring mold.
Like the disc/rim mold, proper shear edges and core heating
are required. The same quality necessary for the disc/rim
mold is also required for the side ring mold. All other tool
details are similar to what has been discussed above.

8.1.7 The dies were tried out using various sizedvcharges.
By trial and error, the proper charge size was determined.

The ring mold was charged with HMC compound in the main cavity.
Thesge rings were tested and then changed to high strength
rolding compound (XMC). These rings had long directional
glass fibers in areas of high stress concentration.

8.2 Manufacturing Approach

To fabricate a truck wheel with the required roundness and
dimensional accuracy, a highly controlled production process
was adopted. During the program, compression molding was
chosen due to its flexibility and adaptability to future
production systems. ‘

8.3 Manufacturing Technique

The manufacturing process for metal wheels usually involves
stamping, forging, and welding. Each of these processes

can produce nonuniformities such as eccentricity and runout.
Eccentricity is defined as a measure of the amount that the
hub is off-center and runout is a measure of deviation of the
rim from a true circle.
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8.3.1 To minimize eccentricity and runout during the
manufacturing process, two important parameters
must be precisely controlled. These parameters
are:

8.3.1.1 Blanking of the composite laminates

8.3.1.2 Molding procedures while the composite is in the
mold. :

8.9 Composite Laminate Blanking

The continuous glass laminates were stacked with the
required fiber orientation (as dictated by wheel design)
and cut using steel templates. This ensured proper
fiber orientation, weight, and size of the preform.

8.4,1 The discontinuous glass reinforced sheet was blanked
using different steel templates, which are smaller than the
templates for the continuous fiber laminates. The small
blanks of randomly oriented glass laminates flow during the
molding cycle, thus eliminating air entrapment in the molded
wheela. Again the preform blank was cut to closely controlled
weight and dimensional specifications.

8.4.2 The use of steel templates to cut the blanks from
continucus unidirectional glass compound sheet ensured

size consistency of each blank. Furthermore, each composite
charge was weighed before placing it in the mold. The weight
tolerance of the laminated composite blank was controlled

to ensure specified weight tolerance of the wheel before
molding.

8.4.3 In addition to the above procedures., use of steel
molds maintained weight control of the finished product
by preventing material from escaping during the molding
process.

8.5 Weight Control

8.5.1 The following steps were adopted to control the weight
of the plastic wheel: ’

8.5.1.1 The continuous unidirectional glasslcomposite was

supplied as uncured unidirectional prepreg on a roll
with the proper width up to 48" (1219 mm) wide.
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8.5.1.5

8.6

8!6'1
mold,

8.6.1.3

8.6.1.4

8.6.1.5

8.6.1.6

8.6.1.7

‘is 800 to 1000 psi

Each ply was cut in a circular preform shape and
stackad to form the continuous fiber laminates.
The plies were stacked 30 as to maintain the fiber
orientation required by the design.

The chopped glass molding compound was supplied
in a thick sheet form with closze tolerance in terms
of weight per unit area.

A special steel template was used to cut the chopped
glass composite sheet to the proper configuration.
The blank was then flattened on a press to level any
irregularities that may exist.

The continuous glass fiber laminate was then laminated
to the discontinuous glass blank. The air between

the plies was evacuated using a vacuum pump. This
reszulted in a charge ready for molding.

Wheel Molding

After the blank was cut and ready for placement in the
the following procedures were adopted:

The blank was placed on the bottom half of the heated
mold, which is installed in a hydraulic press.

The mold is closed by the press hydraulic system.

The molding parameters were 1000 psi (6.895 MPa)
pressure, 300 degrees F (148.9 deg.C) mold temperature,
and a 20 minute cure cycle. The specified pressure
(5.516 to 6.835 MPa>, while the
specified temperature is 280 to 300 degrees F (137.8

to 148.2 deg. C?., The upper limits of these parameters
were used to assure gquality wheel moldings.

At the end of the cycle, the press pressure was
released and the mold was opened.

The cured composite wheel was ejected from the mold.
Each wheel was trimmed and inspected.
The mold surfaces were cleaned and sprayed with a

mold release compound. (This is done to prevent the
part from sticking to the mold).
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8.6.2 A photograph of the compression molding press used in
this process is shown in Figure 45.

8.7 Discussion of the Manufacturing Process

8.7.1 The first attempts at composite wheel fabrication
utilized an all continuous glass compound oriented in the
design directions (radial and circumferential). This type of
material, however, did not produce consistent molded wheels.
All that was learned in this phase was the charge weight was
approximately 44 pounds(19.96 Kg). After several trials, a
final charge pattern was developed.

8.7.2 Composite wheels were manufactured using two different
glass orientations. The first group of wheels were molded
using an equal amount of continucus and discontinucus glass
reinforcement (50% XMC, S50% HMC). The second group was molded
using a high percentage of continuous glass (XMC type material)
in a circumferential and in a radial direction.

8.7.23 Preliminary Inspection of Completed Composite Wheel
Assembly.

Upon completion of manufacturing, a tire, tube, and flap were
mounted on the plastic wheel and lock ring. The tires were
inflated to 90 psi (621 KPa). The air pressure was checked
periodically over several months and no loss in air pressure
was noted. The lock ring also remained in place. This
completed the manufacturing process. No C-scan was performed.

3.0 COMPOSITE WHEEL TESTING
8.1 Mounting and Demounting

One of the considerations in the use of composite wheels was
mounting and demounting the tire, tube and flap to and from
the wheel. Using standard steel tools, the tire with tube
and flap was mounted to the composite wheel and demounted.
The tire was inflated to approximately 95 psi (665 KPa) and
held for 30 minutes. The maximum inflation pressure achieved
was 105 psi (724 KPa). Mounting and demounting were repeated
ten (10) times. No detrimental effects on the wheel were
observed. Figure 46 is a photograph of the tire mounted on
the wheel, while Figure 47 illustrates some wear on the lock
ring after nine demountings.
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Figure 45 S00 Ton Hydraulic Press to be Used in

Manufacturing Leaf Springs and Wheel Assemblies
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46 Wheel with Tire Mounted

Figure
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Figure 47 Close—-up of Mounted Tire Showing Wear on Lock Ring
after nine demountings
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9.2 Testing at Budd Wheel

Composite Wheels previously described were subjected to testing
at the facilities of the Budd Company located in Detroit,
Michigan. In order to determine whether these wheels would
perform as well as the basic steel wheel, they were subjected
to the Dynamic Radial Fatigue Test in accordance with the
procedure described in SAE J267A. The first test conducted

was the dynamic cornering fatigue test. In this test a selected
axial load was applied to the hub and lug bolt while spinning
the wheel rim at a constant rate. The axial load was applied
to provide a bending moment to simulate the loading condition
encountered during vehicle cornering.

The wheel was mounted to a rotating mounting plate to which
the rim flange was securely clamped. The composite wheel was
fastened to the test hub by bolts and ten flat-faced nuts with
a bearing area 1 11/16 inches (42.86 mm) in diameter. The
wheel nuts were tightened to the hub with a torque equal to
450 ft-1lbs. (610 Meter-Newton). The test hub was bolted to

a horizontal load shaft as shown in Figure 48.

9.2.1 Load vs. deflection was determined for wheel #1 and
wheel #2.

Data is shown in Tables 32 and 4.

9.2.2 The clamped composite wheel without any applied load
was within the specified eccentricity of 0.010" (0.254 mm)
normal to the point of loading. The applied load was
maintained at a nominal angle of 40 degrees from a plane
through the center of the rim. The test loads were applied
in increments of 1,000 lbs. (4448 Newtons) up to the maximum
capacity of the testing machine (14,000 lbs., or 62,275
Newtons). The applied load and the deflection of the shaft
were monitered and measured after each load increment. The
maximum static deflection of the shaft for wheel #1 reached
0.237 inch (6.02 mm) at 14,000 lbs. The load was then
decreased gradually back to O and the deflection of the
shaft was again monitored. The static test Data of this wheel
is shown in Table 3. No permanent deformation or deflection
was noticed during the test.

9.2.3 The composite wheel was then subjected to the maximum
load of 14,000 lbs., and the cornering fatigue test started.
The load was applied with a moment arm of 38", thus, a bending
moment of 45,500 ft.-lbs. (61690 meter- Newton) was applied

79




*uotgaeoyidd
¥1ddy peo JO UOTEDAITO puUue Burtjunoy taaym ajzrsodwosn gp 8anby
4

80




TABLE #3

Static load-deflection Readings of Composite Wheel #1

LOAD APPLIED DEFLECTION UP DEFLECTION DOWN

POUNDS INCHES INCHES .
700 Zerved out 0.018
1700 | 0.021-0.018-0.019 *
2700 0.038-0.033-0.0335

3700 0.057-0.06-0.055

4700 0.087-0.,084-0.087 - !

5700 0.104-0.100 First Jump

6700 0.115-0.119 Started over

7700 ) 0.136-0.136

8700 : 0.151-0.156

9700 _ 0.157—9.175

;0700 0.181-0.193

11700 0.196-0%.212

12700 0.212 gecond Jump

13700 0.230 StarﬁedJoyer

14700 0.237 |

14000 After approximetely 2 minutes 0.2494

#No readings were taken going down except for the one at the 700.
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TABLE #4

Static load-deflection Readings of Composite Wheel #2

LOAD APPLIED DEFLECTION UP DEFLECTION DOWN
POUNDS INCHES INCHES
700 Zeroed QOut 0.004
1700 | 0.025 0.036
2700 0.041 0.075
3700 0.055 ‘ 0.094
4700 ' 0.068 | 0.108
5700 0.080 0.120
6700 ' 0.108 0.134
7700 0.125 0.142
8700 0.135 0.155
9700 0.146 0.164
10700 0.158 | 0.174
11700 | : 0.170 ' 0.184
12700 0.180 0.193
13700 ' 0.193 0.201

14000 0.206

14000 After approximately 2 minutes 0.210
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during the entire teest. The teat continued until a measured
deflection of 0.020 inches (0.508 mm)> was detected. This
deflection occurred after 340 revolutions. The testing machine
automatically stopped. The setting was redjusted to allow axle
deflection up to 0.060 inches (1.524 mm) and the test started
again. After several revolutions, this deflection was reached
and the testing machine automatically stopped. Although there
was no visible failure of the composite wheel, the capability
of the machine could not allow any higher deflection while
maintaining the maximum bending moment on the wheel.

Thus, the test was terminated. The plastic wheel was dismounted
from the machine and examined.

Details of the composite wheel mounting and testing are shown
in Figures 49 to 58.

9.2.4.1 Examination of the composite wheel, revealed several
long cracks extending between the mounting bushings. Other
cracks were alsc evident through the disc area of the wheel.

9.2.5 The following observations were reported:

9.2.5.1 The wheel had moderate cracks on the inner and outer
surfaces, but none appeared to penetrate the complete disc
section.

3.2.5.2 The initial torque on the 10 wheel nuts dropped by

an average of 110 ft.-1bs.(149 meter—-Newtons) per nut. This
condition could have had a significant effect on the deflection
displayed during the test.

S.3 FATIGUE TEST - COMPOSITE WHEEL #2

The exact procedures as ocoutlined above were followed in testing
this wheel. The wheel was attached to the wheel hub by means
of 10 ball seating nuts, the same type as currently used on
steel wheels. Each nut was torgued at 350 ft.~-1bs. (475 meter-
Newton?. The test was conducted in the same manner, according
to SAE J2Z267A.

S.3.1 The wheel was subjected to the 14,000 lbs. axial load

and rotated until a deflection of .020" was detected. This
deflection occurred after 1,440 revolutions. Upon increasing
the allowable deflection on the machine to 0.080 inch, the

wheel testing continued. The 3,200 test cycles were accumulated
when the 0.060 inch deflection limit was reached. At this
point, the test was discontinued. The wheel was dismounted

and examined for visible cracks or evidence of failure.

83




Composite Wheel 3et Up for Tightening
Wheel Nuts to Fixture Studs (Wheel #3).
Figure 49

Instrumentation of Test Fixture to Measure
Axle Deflection Under Static Loads (Wheel #3)
Figure 30
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Composite Wheel During Cornering Fatigue
Test Wheel #3).
Figure 51

Non-Destructive Testing of Compeosite Wheel
accoustical Emmission methods (Wheel #1)
Figure 52
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Mounting of Composite Wheel with Steel Ring
Using Conventional Clamps (Wheel #1)
Figure 53

Set-Up of Stationary Deflection Test and
Instrumentation of Plastic Wheel for measuring
Torque versus Deflection (Wheel #1)

Figure 54
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Close-Up of the Composite Wheel Mounted to
the Hub and Axle of Cornering Fatigue Testing

Machine.

Figure 55

Composite Wheel During Fatigue Test, Adhesive
Bond between Steel Ring and Composite Wheel
Disc Shearing QOut.

Figure 56
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Steel Ring Seperated from Composite Wheel Disc
due to Adhesive Failure after 3,400 Fatigue
Cycle under Maximum Loads.

Figure 57

Close-Up of Adhesive Resin Separation after
Completion of the Fatigue Test.
Figure 58
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9.3.2 The following observations were reported:

9.3.2.1 The wheel had small cracks on the inner and outer
surfaces of the disc. The size of these cracks was smaller
than those experienced in the first wheel. None of the cracks
penetrated through the disc section.

9.3.2.2 There was a significant drop in the initially applied
torque on the attaching nuts. This drop in torgue allowed the
excessive deflection of the disc and the consequent need to
stop the test.

9.3.3 It appears that the mounting system adapted for the
second wheel exhibited more rigidity, and reduced cracking

and deformation of this wheel. Wheels with inserted bushings
exhibited a significant number of c¢racks that propagated
throughout the section of the wheel disc. Further testing

was conducted modifying the type of steel reinforcement
attached to the wheel hub. Spring steel discs with a thickness
of .020" or slightly thicker was fabricated and attached to

the composite wheels.

9.3.4 It is important to note that the design load of this
composite wheel was based on 5,200 pounds (2359 Kg or 23131
Newtons) load. A safety factor of about 2.7 was applied
resulting in an applied load of 14,000 pounds (6350 Kg or

62275 Newton) during the initial phase of this testing. The
recommended practice of the SAE test procedures requires a
factor of 1.9. This will require a maximum test load of

9,880 pounds (43948 Newtons). These modifications were adopted
during the next phase of testing.

9.4 Endurance Test (MIL SPEC T-12459D)

8.4.1 Upon completion of dynamic radial fatigue testing,
further dynamic testing was performed on the National Bureau
of Standards Test Machine to determine whether the wheels
could perform in the indoor endurance test of Military
Specifications MIL-T-12459D dated 31 December 1979. The tires
used were 1100 X 20 NDCC 12 ply. Four wheels were prepared.
The tires were inflated to 85 psi (586 KPa) cold. The test
setup is as shown in Figure 59.
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The test regquirements were as follows:

Wheal speed 30 MPH (28.3 Km/hr)
Wheel Load Time

Pounds Newtons Hours

3645 25.121 7

4630 32.336 16

8180 42.472 29

Test Temperature = 99 degrees F (37.2 deg.C)

Wheel to axle bolts were tightened to 100 ft-1lbs. (136 meter-
Newton?.

Metal rings were us=2d on both sides of the composite wheel
for mounting purposes.

9.4.2 Test results were as follows:
9.4.2.1 Tire air pressure climbed and held at 94 psi.{(648 KPa)

9.4.2.2 The wheel surface temperature increased to 115 degrees
F (45.1 deg C) and 130 degrees F (54.4 deg C) was recorded
between tire and wheel via a gap in the side ring.

9.4.2.3 Compesite wheel sample A endured for 11 hours, then
disintegrated into several pieces allowing the tire bead to

slip over the wheel, causing the tube to be punctured. The

machine automatically disengaged at this point. (see Figures
&1 thru 64).

9.4.3 Another composite wheel was tested using the same
procedures outlined above. This wheel (sample B) endured
the load for 21 hours, 39 minutes, then was shut down
manually. The test was stopped due to several cracks in the
whea2l surface (see figure 60).

9.4.4 Sample #7 ran 7 hours at 3645 1b. (70% single tire
load?, and 4 hours, 4942 minutes at 46%0 1lb. (90% single tire
load). At this time the wheel lock ring blew apart, shattered
into several pieces and punctured the inner tube. The test
was then halted.

S.4.5 Sample #4 ran 7 hours at 3645 1lbs. 16 hours at 4690 1bs.,
and 8 hours at 5330 lbs (110% single tire load). The test

was then stopped because of several cracks in the wheel and

lock ring, which created a serious safety hazard. All testing
for samples #4¢ and #7 was conducted at 30 MPH.
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On samples 4 and 7, locking rings from samples A and B were
usad.

Upon stopping the tests, the wheels were examined. Many cracks
were noted. Both of the wheels cracked and broke out at the
lip. 5See figures 61 and 64 for the cracking.

9.4.5.1 The failed locking ring was sectioned and examined.
(Figures 6% and 66) The failure occurred under the tire bead
where the fracture was completely through the cross section

of the ring. This caused a section to break out, with the
remaining section puncturing the inner tube. Lack of adhesion
betwaeen the resin system and the directional fibers appears

to be the cause of the failure. In addition, the sectioned
ring reveals some minor porosity at the interface between the
continous and discontinucus glass compound.

2.4.5 The tested wheels were examined using the following

P

technigues:

9.4.8.1 Vizual examination - inspection, using intense light
and magnifying glasses.

3.4.6.2 X-ray examination

3.4.56.3 Photographic inspection of sectioned wheels
9.4.7 These inspections revealed the following:

2.4.7.1 Some cracks were ohserved in the tested wheels.

9.4.7.2 No discontinuity or major separation in the resin
matrix could be detected.

9.4.7.3 Some voids were scattered througheout the wheel
cross section, especially in the hub area.(Figure &7}

29.4.7.4 Some of the continuous reinforcing fibers were kinked
and wavy. (This was attributed to the design of the mold).
This phenomena called “marcelling”, was a major cause of the
failure of the composite wheels during testing.
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Figure

66 Cross-Section of Locking
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10.0 CONCLUSIONS

. 10.1. Wheels can be made from structural composites.

10.2. Manufacturing procedures for the wheel must be revised
to prevent marcelling.

10.32. The resin system regquires improvement to prpvent
delamination in the spinning load.

10.4., The design criteria are adeguate.
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11-0

11.1

11.2

11.3

RECOMMENDATIONS

The method of manufacturing must be improved or be
restructured to prevent marcelling.

More testing must be done prior to guantity production.

Non-destructive techniques should be applied throughout
the manufacturing process.
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